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Turbulence modeling of rotating 
confined flows 
Laurent Elena and Roland Schiestel 
Ins t i tu t  de Recherche  sur  les Ph~nom~nes  Hors d 'Equ i l i b re ,  D ~ p a r t e m e n t  Mod~ l i sa t i on  Num6r i que ,  
Marse i l l e ,  France 

We propose here an original differential stress model which takes into account some of the 
implicit effects of rotation on the turbulence. It is applied to the numerical prediction of the 
turbulent f low inside a shrouded rotor-stator system. The results of this model are 
compared to those obtained wi th  four other turbulence models and to the experimental 
data. The advanced second-order models produce quite correct predictions for the mean 
flow, but it is shown that it is necessary to take account of the rotation effects in order to 
obtain satisfactory behaviour of the Reynolds stress. 
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Introduction 

Numerical prediction of the turbulent flow in rotating cavities is 
of crucial importance for the conception and design in turboma- 
chinery. Indeed, due to the high temperatures, the strong rota- 
tion rate, and the complicated geometry, the experiments gener- 
ally do not allow precise description of the flow inside the 
cavities of the gas-turbine engine. Thus, the numerical approach 
seems to be necessary to optimize the cooling system and the 
geometry; but a turbulence model able to predict a wide range of 
confined rotating flows accurately remains a difficult challenge. 

The aim of this work is to test classical turbulence modeling 
and to propose improved models for numerical prediction of the 
inhomogeneous turbulent flow submitted to rapid rotation. More 
precisely, we consider here the turbulent flow in the shrouded 
rotor-stator system (see Figure 1) studied experimentally by Itoh 
et al. (1990). This experiment is a major reference, because the 
authors produced measurements of not only the mean flow but 
also of all the six Reynolds-stress components. The authors 
emphasize the existence of a relaminarized region (near the 
rotation axis) even for high rotation rates. Consequently, the 
model must be able to describe the low Reynolds number region 
not only near a wall but also in the core of the flow. Moreover, 
the model must accurately predict the location of the transition 
from laminar to turbulent regime. 

The Coriolis forces deeply modify the structure of the turbu- 
lence field. Their effects, such as angular dispersion, the ten- 
dency of the turbulence to become bidimensional, and the reduc- 
tion of the dissipation rate e, are underlying subtle interactions 
and require refined modeling. Thus, we propose a new differen- 
tial stress model which takes into account these effects. This 
model is inspired from Reynolds (1991), Reynolds and Kassinos 
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(1994), and Cambon et al. (1992). Furthermore, the combined 
effects of confinement and rotation are also taken into account 
through nonhomogeneous terms in an original manner. 

Turbulence modeling 

Classical models 

The models proposed in this work arc compared to the more 
usual ones. We retained for comparisons three turbulence mod- 
els usually considered to be the standards: 
(1) the low-Reynolds number k-e model of Launder and Sharma 

(1974); 
(2) a zonal modeling with an algebraic stress model (ASM) in the 

core of the flow based on the Rodi's hypothesis and a low 
Reynolds number k-e model for the wall treatment; and 

(3) a classical differential stress model (RSM1) which allows us 
to compute the low Reynolds number region: the model of 
Hanjalic and Launder (1976). 

For brevity, these three models are not detailed here. Further 
applications to rotating cavities can be found in Schiestel et al. 
(1993) and Elena and Schiestel (1995a). 

RSM2 model 

The models of the new generation were developed with constant 
attention to such extreme states of turbulence as the two-compo- 
nent limit near a wall and the strong anisotropies satisfying 
realisability. Here, we retained the model developed in Launder 
and Tselepidakis (1994) devised for more general applications. 

A few adjustments were necessary to apply this model to the 
case considered here, where a relaminarized region can develop 
away from the wall. We specify only the particular forms used for 
the "slow" part d~(9 of the pressure-strain correlation and for 
the dissipation tensor eij. All the remaining unknown correla- 
tions are modeled as in Launder and Tselepidakis (1994). 

For ,h(9 the modeling functions E t and c'~ adopted here are " r ' l J  , 

deduced from the Craft's (1991) high Reynolds number proposals 
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( ) 
' r--] rotating wall I ;~ stationary wall  

Figure 1 Geometry of the cavity, G=s/b=O.08  

adapted for wall treatment,  because they must vanish at the wall. 

t R R i R "'1 d)(l) = - [ c l a ~  + cl(aikau - X A :  GiJ ) ] S  

with 

Cl : (3"1 ~VF~-2 R + 1)[1 -- exp( - -Re~/40) ]  

c' 1 = 3 . 7 2 ~ 2  R [1 - exp( - Re2/40) ]  (1) 

The second-order tensor aij denotes the stress anisotropy 
tensor, A R and AR3 the second and the third invariant of aq, and 

= g ( A  2 A is the Lumley's "flatness'  parameter  A 1 - ~ R _AR).  
The behaviour of the dissipation tensor at the wall can be 

obtained by Taylor series of the fluctuating velocity (Launder  
and Reynolds 1993): 

E:ll /322 ~33 /312 '~23 ~31 /3 

RII 4R22 R33 2R12 2 R 2 3  R31 k 

for the wall x 1 = x  3 = 0. Away from the wall, it is usual to 
consider that  eq is isotropic for high Reynolds number  of turbu- 

lence and should gradually change to e R i j / k  as the Reynolds 
number  diminishes. The formulation used here has compliance 

with these limits: 

[ Rij + 2 ( l _ f s ) S i j )  e e~, =fAe~. + (1 - - fA)(  f,--~- (2) 

with 

e Rij + Riknjn k +Rkjn in  k +Rklnknlnin  j 
e*j = ~ I + 3(Rpq/k)npnq 

fA = exp( -- 20A: )  exp( - Re2 /20)  

f~ = exp( - Re2/20)  

The complete mathematical statement of the RSM2 model is 
given in Table 1. 

RSM3 model  

We propose a model for the spectral t e n s o r  (I0ij(K) which is 

developed as a function of the wave vector K~, of the classical 
anisotropy tensor (of the Reynolds stress tensor) and of the 
directional anisotropy based on the dimensionality tensor: 

r K iK  j 1 
x,j(~)=q) I~%~(~)1 dS (3) 

~S(~)L K J 

where S(K) is the sphere of radius K (Schiestel 1994). 
The linear part of the pressure-s t ra in  correlation qb!~ ) can be 

derived from this spectral tensor. The resulting form depends on 
the dimensionality tensor in the physical space 

+~) = classical terms 

( - 0 . 6  

- 0.4k(Ui, j + Uj, i) (4) 

N o t a t i o n  

A 
4 

A~, AR3 

a~ i 

AC, AC 3 

b,s  

Dq 
D;j, Dr  
k 
Pij 
(r,O,z) 
Rq 
Re 
Re t 

RO t 
Ui 
U,,Uo, Uz R _ A 3  R) anisotropy parameter,  A = 1 - ~(A 2 

dimensionless anisotropy stress tensor, a R = 
R q / k  - 2/35ij  nt,Yl 
second and third stress-anisotropy invariants, 
A R R R - -  g _ g g R Greek 

= a i j a j i  , AI  3 - -  a i j a j k a k j  

anisotropy of the dimensionality tensor, a~)= 
Cij /k  _ 2/3~ij  e 

- -  C _ C C second and third a c invariants, A 2 - a i j a j i ,  e i j  

A c c C C E i j  k 
= a i j a j k a k j  

disk radius and axial width of the cavity 
dimensionality tensor 
DR = _ R i k U k ,  j _ R j k U k ,  i v 

D~ - - C i k U k ,  j - -  C jkUk ,  i 'Ts, Tr 
viscous and turbulent diffusion 

tb(1) th(2) th(w) 
turbulent  kinetic energy ~ij , ~ i j  , "rij 
Reynolds stress generation by mean shear 
radial, tangential, and axial coordinates 12 
Reynolds stress tensor 1~ 
rotational Reynolds number,  Re = ~ b Z / v  1)* 
turbulence Reynolds number,  Re t = kZ /ve  

turbulence Rossby number,  Ro t = e / k O *  
mean absolute velocity vector 
radial, tangential, and axial components  of the 
mean velocity in an absolute frame of reference 
unit vector normal and distance to the wall 

dissipation rate of turbulent  kinetic energy 
dissipation rate of Reynolds stress tensor 
orientation tensor (equal to + 1 if indices are all 
different and cyclic, - 1  if different and anti- 
cyclic, and 0 otherwise) 
kinematic viscosity 
wall shear stress on the stationary and rotating 
disks 
turbulence, mean strain, and wall reflection 
parts of the pressure-s t ra in  correlation 
Angular velocity of the disk 
Rotat ion vector f l  = ( l l  1,112, f/3) 
Intrinsic rotation vector, ~ *  = f~i - ½eqkUj. k 
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Table 1 RSM2 model for low Reynolds number f lows 

dR o _ po + d)~}) + &(2)+ &(2W)+DT _t_D, 
~ i j  - -  ~ i j  - -  - - t  j - -  - - i j  - -  ~ i j  dt 

Po = - Rik UL k -- Rjk Ui. k 

1 R 

4)! 2)= _0 .6(p ,7  - 2 R P5,i) + 0.3 a,iPi/ 

_ RIk (RikUl i-]-RjkUi 1)] 0 . 2 [ ~ ( U k , , + U , , k ) - - ~ -  . , 

- rain(0.6, A)[A~(P, j  - D g ) +  3o~,a~j(P,~,  - O2~)l 

~,j,h(2~l=0.2 + ~ n k n , , 8  o - 2-~i , , ,k , , j  ~*~21n,.nk 

k(Rpqnonq) v2 
x 

ey 

e ' ] . k  

DiS= vRu.// 

[ R O 2 ) 
~ (1  - fs)~ j  *;, /=fAe*i+(1 -- fa)  [ f,-~"- + s 

R,i+R,k njn~ 4-Rkinin k -FRk/n k n/n in J e 
~* 1 + 3(Rpq/k )npnq -k 

cl =(3.1 AV/-~2 + 1 )(1 - exp( - Re2/40)) 

c; = 3.72 AV/~2 (1 - e x p ( -  Re2/40)) 
fA = exp( -- 20A 2) exp( - Re 2/20) fs = exp( - Re2/20) 

where 

D,. 5 = - c , , v , , , j  - c j , , v , , . ,  

As a first approach, the tensor Cij is obtained from a simpli- 
fied algebraic model deduced from its transport equation: 

C i j  = + - f c ' k -F t .  2 (5) 

with the empirical coefficient: 

fc = Ro~ 1 / ( 5  -I- R o ,  I ) 

where f~* is the intrinsic rotation vector and Ro t = e/kf~*. 
Reynolds and Kassinos (1994) have shown that, under rapid 

mean rotation, the velocity spectrum tensor, due to phase scram- 
bling, approaches a random spectrum: 

l K i K  j 

(1) ij( K ) = ~OP ll( l~ ) ( Bij -- ~ -  ) (6) 

To enforce this tendency (the model is already compatible to 
this limit), it is probably beneficial to add an extra source term 
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#'~ij such as: 

= _ Ri j  - k~ i )  + : ~ f t .2  ~C, ,  (7) 

The rotation also reduces the energy transfer from large to 
small turbulent scales. This phenomenon is modeled through an 
inverse flux J in the kinetic energy equation: 

h 
J = 8 (8) 

l + f j  

where f j  is deduced from Aupoix's function (1987) and extended 
to the low-Reynolds number flow in order to vanish when Re t 
goes to zero: 

--3 
0.12Ro t - + 0.015Ro t : 

f j  = [1 - exp( - Re~)] 0.254 RO~ -2 + 0.157RoI -j + 1 (9) 

The corresponding term in the Reynolds stress equation is 
considered as isotropic for high Reynolds number and progres- 
sively approaches Ri jJ /k  as the Reynolds number diminishes: 

2 Rij 
J o  = 7 (1 - -  f T ) B i J  J + f r -~  - J  (10) 

with the empirical function: 

.fr = 1/(1 + R e J 1 0 )  

In the rotating cavities, the effects of the inhomogeneity and 
of the shear are mixed with those of the rotation. To model these 
effects, we propose here an inhomogeneous term "~0' which can 
be written as: 

k 2R071/2 * . ) ~'~/ ~ m  
2~j = 0.22 e 1+15Ro~ -1/2 ~ 2 -  RiLl 

/, m 

(:i) 

The aim of this empirical term is also to take into account the 
significant increase of the turbulent diffusion (due to the triple 
fluctuating velocity correlation and to the fluctuating pressure) in 
the case of strong rotation (Shao et al. 1991). 

The complete model is given in Table 2. 

Dissipat ion rate equat ion 

Here we must recall the proposal of Launder and Tselepidakis 
(1994) for the dissipation rate equation, which is used for both 
the RSM2 and RSM3 models. The equation is sensitized to the 
Reynolds stress anisotropy through the destruction term of e, 
and an empirical term is also introduced to represent the effects 
of pressure diffusion in the viscous sublayer: 

d ~  

dt _ _  = - c ~ , ~ R , j ~ . j - c , 2  T + c . T R , J ~ j + ~  ,, , 

+ ce3v-RjkUi jlUii kl + ce4v~k.i 
• E ' " , i  

(12) 
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Table 2 RSM3 model for low Reynolds number f lows 

dRq 

dt 
- -  (1) (2) (2C) d~(2W)_l_(h(2Cw ) - - - - P i j + ¢ , 7  +~Pij +(~ij +vij -- ~'ij 

+D T. + D ~j + ~ i j  + ~ i j  + J q - e ,.j 

p.. ,h(1) ~(2) .h(2w) F i r  Fly have the same q' "r i j ,  "rij , "rij , - - i j , - - i j  and 8ii 
expression as in RSM2 model and: 

d~!2c) = _ 0 . 6 ( D c _  1 c ] -~DIlSij) - O'4k(Ui , j+Uj  i) 

(~(2Cw)--t~ q(.k(2c) 3 " k ( 2 C ) n  n --  3 ,k(2C) n n 1 
i j --~J'L~Wkm n k n m S i j -  2"Vik k j 2 ~ k J  i k ]  

k(Rpqnpnq) 1/2 
X 

ey 

k n;a~ \ 
~' i /=  0.22 Tfgo---~-.-FRij, i ), k 

~q~ij = --OL~(Rij -- k~i j+ ½C,.j) 

{ Rii 2 )5i j )  di/= [ f T T  + "~-(1 - fT J 
y 

k gij ~'~* 2 Cij= ~ 1+ - f c  k 

f j  
J =  - ~ j  ~ 

1 
fT= 

1 + Ret/10 

f j =  [1 - e x p ( -  Re2)] 

2 Ro t 1/2 
fRo-- 

1 + 15 RO t 1/2 
Rot 1 

fc---- 5 + R o t 1  

0.1 2 Rot 2 +0.01 5 Rot 1 

0.254 Rot 2+0 .157  Rot 1 + 1 
1 Cpq * * 

(x ~= --Ut* f~pl-lq 
2 2k ~-~* 2 

where gz = e - 2vk~/2k]/2, c~ = 0.18, c~j = 1.0, c~2 = 1.92/(1 + 
0.63(A.AI~))l/2), c~3 = 2.0 and c~4 = 0.92. 

For the RSM3 model, the inverse flux appears in the turbu- 
lent kinetic energy equation: 

dk 
~-~ = - R i j U i ,  j + J -  e 

k 
+0.22(-~Rqk,j+vkd), i 

(k2  2 R o t  1/2 * * ) ~ " ~ i ~ j  

+0.22 T 1 + 15Rof  1/2 ~ * ~ k ' i  (13) 
,J 

and in an analogous way in the stress transport equation. 

Computational aspects 

The numerical investigations has been done with a finite-volume 
code. The convection and diffusion terms are discretized with the 
power-law scheme and the velocity-pressure coupling is solved 
using the SIMPLER algorithm 

To overcome the severe stability problems due to high rota- 
tion rates, several stabilizing techniques were introduced in the 
numerical procedure. Thus, the three velocity components are 
discretized on a staggered grid, but the turbulent stresses are all 
collocated at the pressure node allowing block solution, which 
strongly enhances stability. The 6 x 6 Reynolds stress system is 
solved by a direct method, which was necessary to reach the 
convergence. Several other stabilizing techniques were intro- 
duced in the code, such as an implicit treatment of Coriolis terms 
(Schiestel et al. 1993) (in the case of a rotating frame of refer- 
ence) and regular and inertial relaxations. For implementation of 
the second-order closures, the code uses the decomposition 
Rij = F ( i j ) c g U i / O x j  + (Yij introduced by Huang and Leschziner 

(1989), which allows us to restore a diffusive formulation for the 
Reynolds-stress terms in the mean flow equations. The complete 
procedure is described in Elena (1994) and Elena and Schietsel 
(1995b). 

Use of low Reynolds number models requires use of thin 
grids near the walls in order to capture the rapid variations 
across the boundary layers. These are built according to geomet- 
rical series variations allowing a refinement near the walls. A 
grid independence study of the solution has been done, and the 
characteristics of the meshes used are given in Table 3. Because 
of numerous gradient terms, the RSM2 and RSM3 models need 
more discretization points in the center of the cavity than do the 
classical models. 

Discussion of the results 

Flow parameters 

Figure 1 is a schematic diagram of the rotor-stator system 
considered, which is constituted of a rotating disk in a cylindrical 
casing. The dimensionless radius of the rotor is b/s = 12.5. The 
computations have been carried out with the five models for a 
rotational Reynolds number Re = 106, which corresponds to the 
experimental investigations of Itoh et al. For such a Reynolds 
number, the flow presents separated boundary layers on each 
disks. Then, the fluid moves radially outward along the rotor and 
returns inward along the stator. The motion is concentrated near 
the walls, and a central core is formed were the velocities are 
constant (U 0 = Cte and U r = U~ = 0). 

Mean velocity profiles 

The mean velocity profiles are given in Figures 2 and 3. They 
show, as in the experiment, that the radial flow is confined 
between the lateral wails and a nonviscous central region without 
any radial motion and where the tangential velocity is almost 
constant. 

Table 3 Characteristics of the employed meshes 

Turbulence model Number of points (N z x N r) Ar/s at the upper wal l  dlz/s at the disks Central cell, (A-z x Ar)  

k - e  ASM 
and RSM1 models 80 x 1 O0 4.0 x 10 -4 3.0 x 10 -4 0.03 × 0.15 

RSM2 and RSM3 models 80 x 130 2.0 x 10 -4 3.0 × 10 -4 0.03 x 0.1 
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U / ~ r  
0 , 2 1  r I I I I 

.~. o Exp. data . . . . .  ASM 
0,1 ,[=lt x 

. . . . .  k-¢model - --  -RSM1 

O~ t - - - -~QQD-B. .O-- -e - - -<3- - - - -~- - - -O-~-~C ~ - 

0 0,2 0,4 0,6 0,8 z/s 1 

U r /Q r  
0,2 I I I i 

O Exp. data ~ RSM3 
0 , 1 %  ... . . . . . .  RSM2 

0 ~. ~ ; ; ; ~  C C C 0 G 

-0,1 

-0,2 I I I I 
0 0,2 0,4 0,6 0,8 z/s 

Figure 2 Radial velocity profiles, r/b=O.08 

v 

The three classical models (k-e model, ASM, and RSM1) 
strongly underestimate the Ekman boundary-layer thickness on 
the rotor side. Indeed, these models provide an almost laminar 
flow near the rotor. A clear improvement is produced by the 

U / ~ r  
1, i i i i 

0,8 

0 ,6 (~  

0,4 o-o o. Lo-.o_o:o_ o_-o_o 

0 , 2 -  

0 I 
0 0,2 

Ue / f4r 

0,8 

0,6 _ ~ ~  

0,4 c - C  

0,2 

0 I 
0 0,2 

! 

0,4  0 ,6  0 ,8  z/s 1 

I I I 

I 1 I 
0 ,4  0 ,6  0 ,8  z/s 

Figure 3 Tangential velocity profiles, r/b=0.8 (same cap- 
tion as Figure 2) 
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ASM and RSM1 models near the stator. The advanced models 
(RSM2 and RMS3) have a very satisfactory behaviour. 

For the tangential velocity profiles (Figure 3) none of the 
classical models give, at once, a correct rotation rate of the 
central core and a satisfactory behaviour near the walls. Particu- 
larly, the local extrema that appear in the outer part of the 
boundary layers are characteristics of laminar flow. The RSM2 
and RSM3 models both cure these weaknesses, and the com- 
puted profiles are then very close to the experimental one. 

In fact, the Ekman layer thickness and the rotation rate of 
the central core directly depend on the flow regime. The classical 
models, which fail to predict the correct distribution of laminar 
and turbulent region, are then unable to produce a satisfactory 
description of the mean flow. The use of an advanced model 
seems to be necessary in order to compute the transition zone 
precisely. 

Reynolds stress profiles 

Figures 4 and 5 compare normal Reynolds stresses. Near the 
stator, the ASM model produces an acceptable distribution in 
the core region, but it deteriorates near the wall due to the wall 
region treatment based on k-e. The behaviour of the RSM1 

1,5 / I I i 

1,2 ~ \ 0 Exp. data 
. . . . .  ASM 

~ \ [  \ \ - -  --  -RSM1 0,9 
- ~ - q ~  . . . . . . . .  RSM2 

0,6 q~DOc~'~ - ~ " " - ~  - - -  RSM3 

0,3 

0 (a) I I ~ i-- - -  -- 
0 0,1 0,2 0,3 1-z/s 0,4 

1 , 8 |  i r I 

1,5 ~- -~ 
\ 

1,2 ~ ' ~  

0,9< 

0,6 \ -'~ .... "" 

(b )  " -  - -  - 
0 I I r - - - -  

0 0,1 0,2 0,3 1-z/s 0,4 

2,1 ~ i I i 

1,8 ~ \ 
I o \  1,5 [.. \ 

1,2 ~ .  

0,9 

0,6 ._ -~ 

0,3 ~" .~  ~ - ~  
o [c) I I - - I ~  - - 

0 0,1 0,2 0,3 1-z/s 0,4 
Figure 4 Reynolds stress profiles near the stator, r/b=0.8: 
(a), (Rzz/~s)l/2; (b), (Rrr/'rs)l/2; (c), (Roe/'rs)1/2 
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1,2 I I I 

0,9 o Exp. data 

. . . . . . . . .  RSM2 

0,30'6 ~ ~ , ,  - - -  RSM3 _- 

Ca) I " . . . . .  1 . . . . . . . . . . . . . .  I . . . . . . . . . . . . . .  

0 0,1 0,2 0,3 z/s 0,4 

1,2 i i i 

0,9 :be,, 

0,3 - 

o - -  
0 (b) i ...... I .............. I ............. 

0 0,1 0,2 0,3 z/s 0,4 

1,5 i i i 

1,2 

0,9 

0,6 

0,3 

i " " , ,  . . . . . . . . . . .  o. . .  u 
I . . . . .  I 

0 0,1 0,2 0 ,3  z/s 0,4 

Figure 5 Reynolds stress profiles near the rotor, r/b=0.8: 
(a), (Rzz/~r)l/2; (b), (Rrr/'rr)l/2; (C), (Roo/T,) I/2 

model is unsatisfactory, with an overestimation of the maxima, 
and too strong an axial decrease. The results obtained with the 
RSM2 and RSM3 models are in satisfactory agreement with the 
experimental data, and the introduction of the new terms does 
not produce important changes in the predictions. However, a 
slight general improvement is given by the RSM3 model near the 
stator side. At the vicinity of the wall, the RSM2 and RSM3 
models overestimate Rzz (which represents the fluctuations nor- 
mal to the wall) and underestimate Roe. This seems to show that 
the energy transfer between these two components is not com- 
pletely accounted for by the models, and this is probably due to 
too crude a modeling of the wall reflection part of the pressure- 
strain correlation. 

In the rotor boundary layer (Figure 5), only the results ob- 
tained with the RSM2 and RSM3 models are shown, the other 
models producing a relaminarized flow. The RSM2 model fails to 
mimic precisely the experimental stresses. Indeed, even if the 
maximum is well located, the axial decrease of the normal stress 
is too abrupt, leading to a quasirelaminarized flow in the core of 
the cavity. The modifications proposed here bring the Reynolds 
stress profiles into closer agreement with the experimental data. 

0,5 

Figure 6 

A R 
2 

1 , 5 stationalry wall J 

' :i':"'"'" " " m 

O k I 1 
-0,2 0 0,2 0,4 AR 3 0,6 

Reynolds stress tensor anistropy, RMS3, r/b=O.8 

The slope of the Reynolds stress is then well predicted, and the 
turbulence level in the core of the cavity is in close agreement 
with the experimental one. 

Structure of the turbulent field 

Both confinement and rotation deeply affect the structure of 
turbulence but in a very different ways (Reynolds 1991). 
(1) Two-component turbulence: At the vicinity of a wall, the 

continuity requires that the fluctuations normal to the sur- 
face vanish faster than those parallel to it, and thus, the 
fluctuations lie in a plane parallel to the wall. 

(2) Two-dimensional (2-D) turbulence: The rotation has a ten- 
dency to produce long eddies aligned with the rotation axis, 
without variation along it (but the 2-D turbulence need not 
to be two-component). 

Figures 6 and 7 emphasize that the RSM3 model captures 
well the structure of the turbulence submitted to the combined 
effects of rotation and confinement. On the invariant map of 
Figure 6, the second invariant of the Reynolds stress anisotropy, 
A2 R, is plotted as a function of its third invariant A~. It shows 
that the model respects the two-component limit near a solid 
boundary. The anisotropy diminishes as the distance to the wall 
increases, and in the central core of the flow, the turbulence is 
apparently quasi-isotropic. 

The structural anisotropy based on the dimensionality tensor, 
a~i = C q / k  - 2/35q,  is given in Figure 7. The two invariant maps 
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are bounded by the curve A3 c = - A  c 3/2/.f6-, which represents a 
structural axisymmetric behaviour. In the core of the flow, the 
structural anisotropy is high, which may be interpreted as the 
presence of "cylindrical" eddies aligned with the rotation axis. 
Near the lateral walls, the anisotropy is strongly damped. The 
turbulent structures do not have a privileged direction: the 
"cylindrical" eddies are then destroyed by the wall and the shear 
in the boundary layer. 

The very different meaning of the two anisotropies is empha- 
sized by these two diagrams. The Reynolds stress anisotropy 
provides only componentality informations, which the structural 
anisotropy describes the dimensionality of turbulence in the 
sense of the Reynolds (1991) approach. 

Conclusion 

Five models were applied to the prediction of the turbulent flow 
inside a shrouded rotor-s ta tor  system. The following conclusions 
may be drawn from this numerical study: 
(1) Classical models such as the k-e model and the "old fash- 

ioned" Reynolds stress model do not provide a correct loca- 
tion of the relaminarized and turbulent regions. Thus, the 
Ekman layer thickness and the tangential velocity of the 
central core are not well predicted. 

(2) A zonal modeling with a high Reynolds number model in the 
core of the flow and a low Reynolds number one for wall 
treatment is not well adapted to this type of flow. Indeed, a 
relaminarized region extends away from the wall. 

(3) The differential stress models of the new generation proved 
to be an adequate level of closure in order to study so 
complex a flow. The model chosen well predicts the mean 
velocity and Reynolds stress near the stationary wall. How- 
ever, the model is not able to capture the strong effects of 
rotation on the turbulence and therefore, the Reynolds 
stresses near the rotor are unsatisfactory. 

(4) The present proposals that take into account the implicit 
effects of the rotation on the nonhomogeneous turbulence 
field were shown to cure the main failures of the classical 
models and constitute a promising way to predict inhomoge- 
neous turbulent flow submitted to rapid rotation. Further 
investigations for various flows conditions are necessary to 
test the degree of universality of the model. 
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